The First Hilbert Coefficient of Stretched Ideals

نویسندگان

چکیده

In this paper, we explore the almost Cohen-Macaulayness of associated graded ring stretched ${\mathfrak m}$ -primary ideals with small first Hilbert coefficient in a Cohen-Macaulay local $(A,{\mathfrak m})$ . particular, structure satisfying equality e1(I) = e0(I) − ℓA(A/I) + 4, where and denote multiplicity coefficient, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Stretched Ideals and Sally’s Conjecture

We introduce the concept of j-stretched ideals in a Noetherian local ring. This notion generalizes to arbitrary ideals the classical notion of stretched m-primary ideals of Sally and RossiValla, as well as the concept of ideals of minimal and almost minimal j-multiplicity introduced by Polini-Xie. One of our main theorems states that, for a j-stretched ideal, the associated graded ring is Cohen...

متن کامل

Hilbert functions and lex ideals

We study Hilbert functions of graded ideals using lex ideals.

متن کامل

Normalization of monomial ideals and Hilbert functions

We study the normalization of a monomial ideal and show how to compute its Hilbert function if the ideal is zero dimensional. A positive lower bound for the second coefficient of the Hilbert polynomial is shown. 1 Normalization of monomial ideals In the sequel we use [3, 11] as references for standard terminology and notation on commutative algebra and polyhedral cones. We denote the set of non...

متن کامل

HILBERT FUNCTIONS OF d-REGULAR IDEALS

In the present paper, we characterize all possible Hilbert functions of graded ideals in a polynomial ring whose regularity is smaller than or equal to d, where d is a positive integer. In addition, we prove the following result which is a generalization of Bigatti, Hulett and Pardue’s result: Let p ≥ 0 and d > 0 be integers. If the base field is a field of characteristic 0 and there is a grade...

متن کامل

Hilbert-Speiser number fields and Stickelberger ideals

Let p be a prime number. We say that a number field F satisfies the condition (H ′ pn) when any abelian extension N/F of exponent dividing p has a normal integral basis with respect to the ring of p-integers. We also say that F satisfies (H ′ p∞) when it satisfies (H ′ pn) for all n ≥ 1. It is known that the rationals Q satisfy (H ′ p∞) for all prime numbers p. In this paper, we give a simple c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta mathematica Vietnamica

سال: 2022

ISSN: ['0251-4184', '2315-4144']

DOI: https://doi.org/10.1007/s40306-021-00470-x